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Abstract We investigate a chemostat model in which the growth rate is given by
a Tessier expression with a variable yield coefficient. We combine analytical results
with path-following methods. The washout conditions are found. When washout does
not occur we establish the conditions under which the reactor performance and reactor
productivity are maximised. We also determine the parameter region in which oscil-
lations may be generated in the reactor. We briefly discuss the implications of our
results for comparing the performance of a single bioreactor against a cascade of two
bioreactors.
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Nomenclature
F Flowrate (l h−1)
Ks Tessier constant (g l−1)
P Reactor productivity P = F · Xs (g h−1)
P∗ Dimensionless reactor productivity P∗ = P

αµm Ks V (–)
S Substrate concentration (g l−1)
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S∗ Dimensionless substrate concentration S∗
i = Si

Ks
(–)

S0 Substrate concentration in the feed (g l−1)
S∗

0 Dimensionless substrate concentration in the feed S∗
0 = S0

Ks
(–)

V Reactor volume (l)
X Cell mass concentration (g l−1)
Xs Steady-state cell mass concentration (g l−1)
X∗ Dimensionless cell mass concentration X∗

i = Xi
αKs

(–)
X∗max The maximum (physically meaningful) value of the cell mass

concentration on the no-washout solution branch (–)
X0 Cell mass concentration in the feed (g l−1)
X∗

0 Dimensionless cell mass concentration in the feed X∗
0 = X0

αKs
(–)

X∗
2 Cell mass concentration in the second reactor of a cascade (–)

Y (S) Cell mass yield coefficient (–)
t Time (h)
t∗ Dimensionless time t∗ = µmt (–)
α Constant in yield coefficient (–)
β Constant in yield coefficient (l g−1)
β∗ Dimensionless yield coefficient β∗ = βKs

α
(–)

µ (S) Specific growth rate (h−1)
µm Maximum specific growth rate (h−1)
τ Residence time τi = Vi

F (h)
τ ∗ Dimensionless residence time τ ∗

i = µm · Vi
F (–)

τ ∗
max The value of τ ∗, should it exist, at which the dimensionless cell mass

concentration obtains its maximum value (X∗
max) (–)

τ ∗
i The dimensionless residence time in the i th bioreactor in a bioreactor

cascade.
τ ∗

t The total dimensionless residence time in a cascade of two bioreactors.
Parameter values Ks = 1.75 g l−1, α = 0.01, β = 0.03 l g−1, µm = 0.3h−1.
These give β∗ = 5.25

1 Introduction

There are several well-known kinetic models for the specific growth-rate of cell mass
in bioreactors, including those of Tessier [1], Monod [2], Moser [3], Contois [4] and
Andrews [5]. In this paper we investigate the behaviour of a continuously stirred biore-
actor in which the specific growth-rate is given by a Tessier expression with a variable
yield coefficient. We determine the conditions for washout to occur, the conditions
under which the cell mass concentration inside the reactor is maximised, the con-
ditions under which the reactor productivity (the product of cell mass concentration
with flow-rate through the reactor) is maximised and the conditions for self-sustained
oscillations to be generated within the chemostat.

The conditions under which a steady input of reactants can generate self-sustained
oscillations as an output from a single reactor are of interest because of the possibility
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of using this output to force a second reactor. This has the potential of achieving the
advantages relating to the periodic forcing of a chemical reactor without the addi-
tional costs associated implementing external periodic forcing [6–10]. Understanding
the behaviour of a single reactor is a pre-requisite to understanding the correct design
of a two-reactor cascade [11]. Firstly, the conditions under which the second reactor
is forced by the output from the first reactor are purely determined by the dynamics
of the latter. Secondly, the maximum output from the single reactor system provides
a benchmark for comparing the performance of a two-reactor cascade. Thus in this
paper we present an analysis of the Tessier model in a single bioreactor. Although the
focus of this paper is a single bioreactor, we briefly discuss the implications of our
results for the analysis of a two-reactor cascade in Sect. 4.

1.1 Review of related work

In Sect. 1.1.1 we note some biochemical systems which have been shown to obey
Tessier kinetics. In Sect. 1.1.2 we outline some of the investigations that have been
carried out into systems with a variable yield. (We exclude from this section investiga-
tions based upon Tessier kinetics; they are described in the next section.) In Sect. 1.1.3
we describe mathematical investigations into systems based upon Tessier kinetics,
including results for systems with constant and non-constant yields.

1.1.1 Experimental systems described by Tessier kinetics

It is not possible to provide a comprehensive overview of biological systems that
have been found to obey Tessier kinetics. We limit ourselves to outlining a few such
systems.

Sönmezişik et al. [12] showed that a double substrate model with both Tessier and
Moser growth kinetics represented the experimental data for the growth of Suffolobus
solfataricus, a thermophilic sulfur-removing archeabacterium, reasonably well.

McHenry and Werker [13] showed that the Tessier growth model was the most
suitable to characterize bioactivity in treatment wetlands.

Yurt et al. [14] showed that a model combining Monod growth kinetics for pyruvate
and Tessier growth kinetics for oxygen showed the best correlation with experimen-
tal data for Leptothrix discophora SP-6 (a manganese—and iron-oxidizing sheathed
bacteria that thrive in both iron—and manganese-rich environments).

Beyenal et al. [15] showed that a Tessier growth expression based upon a dual-
substrate model, oxygen and glucose, had good agreement with experimental chemo-
stat data describing the growth kinetics of Pseudomonas aeruginosa (a microbial that
is often used in biofilm studies and for modelling biofilm accumulation).

1.1.2 Models with a variable yield coefficient

Crooke et al. [16] showed that simple chemostat models of the form given by Eqs. 1 and
2 cannot have periodic solutions for any choice of the specific growth function µ (S)

if the yield is constant. However as biological system have an ubiquity for periodicity
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this result motivated an interest in deriving simple extensions of the system (1) and
(2) which do exhibit periodicity. Numerical solutions presented in [16] showed that
limit cycles can be observed under certain circumstances if the yield coefficient is a
function of the substrate concentration. (The use of a variable yield coefficient had
been suggested earlier by Essajee and Tanner [17].) These findings motivated the ini-
tial investigations into systems with a variable yield carried out by Crooke and Tanner
[18] and Agrawal et al. [19].

Crooke and Tanner [18] showed that when Monod growth rate kinetics are assumed

µ(S) = µm

K + S
,

Hopf bifurcations can occur when the yield coefficient, Eq. 4, increases linearly with
substrate concentration. In the same year Agrawal et al. [19] established conditions
for Hopf bifurcations to occur in a model with a general growth rate function, µ (S),
and a general yield function, Y (S). They showed that a Hopf bifurcation will occur
provided that the yield coefficient increases ‘sufficiently fast’ as a function of the
substrate concentration. (Their result provides another proof of the result established
by Crooke et al. [16] that a Hopf bifurcation can not occur for systems with a constant
yield.) Since these pioneering studies, subsequent research has often split into those
investigations using specific growth rate and yield functions and those using general
growth rate and yield functions.

Agrawal et al. [19] considered two expressions for the specific growth rate: Monod
kinetics and a substrate inhibition model. For both models they established parameter
regions in which the steady-state diagram contains two Hopf bifurcation points.

Other investigators have considered the two-component system with Monod kinet-
ics and a linear yield [10,11,20,21]. Yang and Su [10] investigated the productivity
of a cascade of two reactors. They fixed the total residence time of the cascade and
varied the residence time in the first reactor. By choosing appropriate parameters it is
possible to ensure that the stable attractor in the first reactor is a limit cycle. These
oscillations then force the second reactor. Their primary interest was whether such
forcing could increase the productivity of the cascade. They showed that in some cir-
cumstances an “enormous improvement” in performance could be obtained, compared
to a single reactor of the same residence time. Nelson and Sidhu [11] re-investigated
the model considered by Yang and Su [10], arguing that Yang and Su had over-esti-
mated the increase in performance that can be achieved by a cascade because they
had not compared “like with like”: the performance of the optimal cascade had not
been compared against the optimal performance of a single reactor. Balakrishnan and
Yang [20] investigated numerically the productivity of a single reactor as a function
of the residence time. Nelson and Sidhu [21] re-investigated the behaviour of a single
reactor, identifying the residence time which maximised the biomass concentration in
the effluent.

Wu and Chang [22] considered the two-component system with Monod kinetics
and a variable yield of the form (A + BS)γ . Their aim was to derive a control scheme
which could be used to eliminate self-generated oscillations from the system. Their
scheme was shown to be successful in one simulation.
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It is natural to consider a general class of two-component model in which the growth
rate law, µ (S) is assumed to be monotonic, subject to µ (0) = 0, and in which the yield
coefficient, Y (S), is strictly positive, subject to Y (0) = 1 [19,23–27]. Agrawal et al.
[19] showed that such systems have a unique non-washout solution and established
conditions for the non-washout solution to lose stability at a Hopf bifurcation. Huang
[23] used the Poincaré-Bendixson theorem to show that when the no-washout solu-
tion is unstable there exists at least one limit cycle. This general results was applied
to a system governed by Monod kinetics with a linearly increasing yield coefficient.
Pilyugin and Waltman [24] investigated the global stability of the steady-state solu-
tions. They establish conditions showing that when the no-washout solution branch
loses stability at a sub-critical Hopf bifurcation that there is a range of parameter
values over which there are at least two limit cycles. It was shown that a subcritical
bifurcation can not occur for a system with Monod kinetics if the yield varies linearly
with the substrate concentration but it can if the yield takes the form Y (S) = 1 + cS2.
The finding of two limit cycles was extended by Zhu and Huang [27], who found
conditions that guarantee that there exist at least three limit cycles. Zhu and Huang
[26] constructed an annular region with the property that all limit cycles of the system
must be contained within it. Finally, Sun and Chen [25] investigated the dynamics of
a system in which the substrate concentration is subject to a periodically impulsive
perturbation. They found conditions under which the boundary periodic solution is
globally asymptotically stable. As the size of the perturbation is varied the system
exhibits a range of complex dynamics.

A number of authors have investigated models in which two species compete for
the same substrate [24,28–31]. Of interest in these investigations is whether the two
species can co-exist. These papers can be classified into two types, depending upon
if one of the species produces a substance that is toxic to the other species or not. We
first consider those papers where no toxin is produced [24,28,30]. In [24,28] Monod
kinetic are used for both species whilst in [30] general growth rate expressions µ (S)

are used.
Pilyugin and Waltman [24] showed numerically that both species can co-exist peri-

odically when one of them has a constant yield coefficient and the other has a variable
yield coefficient (Y (S) = 1 + 50S3). Huang and Zhu [28] studied the system with
quadratic yields (A + BS2 and C + DS2). It is assumed that one of the species has
a natural death-rate whilst the other does not. The stability of the steady state solu-
tions was discussed. The Hopf bifurcation theorem is applied to the two subsystems
that arise when one of the species becomes extinct. When this happens, the model
reduces to one covered by the results in [23]. Conditions were proved that guarantees
a parameter region over which two limit cycles coexist surround an asymptotically
stable steady-state solution. Zhu [32] has shown that for systems with Monod kinetics
the assumption of a non-constant yield coefficient is not necessary for periodicity as
a Hopf bifurcation can occur when both yield coefficients are constant.

Huang et al. [30] considered a model with general growth rates and general vari-
able yields. They investigated the stability of the steady-state solutions. When one of
the species is driven to extinction the model reduces to a special case of the system
considered in [23] and results on the existence of a limit cycle follow immediately.
They established the condition under which a Hopf bifurcation occurs when one of
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the species is driven to extinction. They did not investigate whether the resulting peri-
odic solutions can be continued into a parameter region in which it can support both
species, as demonstrated numerically by Pilyugin and Waltman [24].

The system in which one species produces a toxin has been investigated in [29,
31,33]. In [31] Monod growth rates are assumed for both species and the yields are
given by A1 + B1Sm and A2 + B2Sn . An equation for the concentration of the toxin
is not included. Huang and Zhu [31] discussed the stability of steady-state solutions
and showed the existence of limit cycles through use of the Hopf bifurcation theorem.

In [29] Monod growth rates are assumed for both species and the yields are qua-
dratic (Ai + Bi S +Ci S2). The system has four components as an equation is included
for the concentration of the ‘toxin’. (In this approach the ‘toxin’ is considered to be
an inhibitor.) This system has a special structure which enables it to reduced to a
three-variable system. The asymptotic behaviour of the three-variable system is ana-
lyzed and it is shown that the steady-state solution in which the two species co-exist
is always unstable. When one of the species is driven to extinction the model reduces
to a special case of the two-dimensional system considered in [23] and results on the
existence of a limit cycle follow immediately. The conditions for a three dimensional
Hopf bifurcation to occur are derived. (Huang et al. [34] have shown that the assump-
tion of non-constant yields is not required for periodicity. A three-dimensional Hopf
bifurcation can occur in this model when the yields are constant.) Zhu et al. [33] have
extended the results presented in [29] to the case of general yield functions, subject to
the restrictions that Yi (0) = 0 and Y ′

i ≥ 0. The theorems in this paper are valid in the
limiting case when no toxin is produced and therefore generalize many of the results
noted in this section up to this point.

We now consider papers where the underlying kinetic model is given by the Andrews
inhibition law [5]

µ(S) = µm S

K + S + S2/Ki
.

Suzuki et al. [35] investigated the dynamics when a single species grows on a substrate
with a linear yield. They obtained the regions in parameter space in which different
dynamic behaviour can be observed. Subsequently Shimizu and Matsubara [36] inves-
tigated the effect of P-control and PI-control upon the dynamics of this system. Wu
et al. [37] have investigate a double-substrate interactive model in which a micro-
organism grows in the presence of two limiting substrates. The yield factor for one
of the substrates was constant whilst the other could either be constant or a linear
function of limiting substrate. A Hopf bifurcation can not occur when both yields are
constant.

The investigations detailed in the preceeding discussion assumed that the growth
rate law was of the form µ (S), as do the papers discussed in Sect. 1.1.3. Recently
Nelson et al. [38,39] have investigated the dynamics of a system with Contois growth
kinetics

µ(S, X) = µm S

K X + S
,
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and a linear yield. These investigations were motivated by experimental studies which
have shown that the rate determining step in the cleaning of wastewaters and slur-
ries from a variety of agricultural processes is governed by the Contois expression
[40]. In [38] a well-stirred reactor was considered whereas in [39] a well-stirred
membrane reactor was considered. A common feature of interest in [38,39] is the
considerable decrease in effluent concentration that can be achieved by using a cas-
cade of two reactors rather than a single reactor. In these systems Hopf bifurcations
are undesirable because, compared against the effluent concentration at the unsta-
ble steady-state solution, they increase the average effluent concentration leaving the
reactor.

1.1.3 Tessier kinetics

In [41–43] results have been obtained for the Tessier growth model when a single
reactor is subject to external periodic forcing.

Liu and Wu [41] showed that the performance of a bioreactor, measured at its opti-
mal steady-state, can not be improved when the flow rate is forced sinusoidally. This
holds for Monod, Moser, Tessier and Andrew growth models for both constant and
non-constant yield coefficients, β = 0 and β > 0 in Eq. 4, respectively.

Liu et al. [42] have shown that it is possible to distinguish between Monod,
Moser, Tessier and Contois kinetic models though frequency response analysis when
the flow-rate, F in Eqs. 1 and 2, is varied sinusoidally. It is also possible to distinguish
between models having constant and non-constant yield coefficients, β = 0 and β > 0
in Eq. 4, respectively.

Wu et al. [43] compared the biomass production of a continuous bioreactor with
a cyclic feed concentration against that produced under optimal steady-state opera-
tion. They considered Monod, Moser, Tessier and Andrew growth models. For Tessier
growth, periodic operation can not improve the reactor performance when the yield
coefficient is constant, β = 0 in Eq. 4. They found that for a non-constant yield coef-
ficient (β > 0) a cyclic feed may improve the performance of a system with Tessier
growth. Whether cyclic feeding improves reactor performance when β > 0 depends
upon the value of the substrate concentration in the feed (S0).

2 Model equations

We investigate a microbial system in which cell mass (X ) grows through consumption
of a substrate species (S). The specific growth rate, Eq. 3, is given by a Tessier expres-
sion with variable yield coefficient, Eq. (4). The objective is to either maximize the
cell mass concentration leaving the reactor as a function of the residence time or the
reactor productivity (P = F X ). This model was evidently one of a number of micro-
bial systems investigated by Chen et al. [7], although they only reported numerical
results for Monod growth kinetics.

The dimensional and dimensionless forms of our model are stated in Sects. 2.1 and
2.2, respectively.
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2.1 Dimensional model

The governing equations of our system are given by

V
dS

dt
= F (S0 − S) − V X µ(S)

Y (S)
(1)

V
dX

dt
= F (X0 − X) + V Xµ(S) (2)

Specific growth rate equation

µ(S) = µm

(
1 − exp

[
− S

Ks

])
(3)

Yield Coefficient.

Y (S) = α + βS, (α, β > 0) . (4)

The terms that appear in Eqs. 1–4 are defined in the nomenclature. Crooke et al. [16]
have proved that solutions to the system defined by Eqs. 1 and 2 cannot be periodic in
time for any choice of the function µ (S) when β = 0.

2.2 Dimensionless equations

By introducing dimensionless variables for the substrate concentrations (S∗ = S/Ks),
the cell mass concentrations (X∗ = X/ (αKs)) and time (t∗ = µmt) the system of
differential Eqs. 1 and 2 can be written in the dimensionless form

dS∗

dt∗
= 1

τ ∗
(
S∗

0 − S∗) − X∗ (
1 − exp

[−S∗])
1 + β∗S∗ , (5)

dX∗

dt∗
= 1

τ ∗
(
X∗

0 − X∗) + X∗ (
1 − exp

[−S∗]) . (6)

The dimensionless model contains four parameters S∗
0 , X∗

0, β and τ ∗. We consider
the case of a sterile feed (X∗

0 = 0) and take the residence time (τ ∗) as the primary
bifurcation parameter. The substrate concentration in the feed (S∗

0 ) and the dimen-
sionless yield coefficient (β∗) are the secondary bifurcation parameters. The value for
β∗ is determined by the choice of microbial system and is therefore not a ‘tunable’
parameter.

A feature of our dimensionless scheme is that there is a one-to-one relationship
between our dimensionless variables and their dimensional counterparts. Hence we
write often, for example, ‘the residence time’, rather than ‘the dimensionless residence
time’.
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2.3 Numerics

The path-following software Auto 97 [44] was used to obtain the steady-state dia-
grams. In these the standard representation is used; solid lines are stable steady states;
dotted lines are unstable steady states; squares are Hopf bifurcation points; open cir-
cles are unstable periodic orbits and filled-in circles are stable periodic solutions. We
investigate the reactor performance (X∗) and reactor productivity (X∗/τ ∗) as a func-
tion of the residence time (τ ∗). For a periodic orbit the norm that is used is the integral
over the period of the solution.

3 Results

In Sect. 3.1 derive some results for system (5) and (6). In Sect. 3.2 we discuss some
numerical results for this system.

3.1 Analytical results: steady-state solutions and their stability

In Sect. 3.1.1 we give the steady-state solutions for system (5) and (6). We note when
the no-washout solution branch is physically meaningful and investigate how the max-
imum value of the cellmass in the effluent stream depends upon system parameters.
In Sect. 3.1.2 we investigate the linear stability of the steady-state solutions. In Sect.
3.1.3 we investigate the necessary conditions for a Hopf bifurcation to occur along the
no-washout branch. Finally, in Sect. 3.1.5 we determine when the reactor productivity
is maximised.

3.1.1 Steady-state solutions

The model (5) and (6) has two steady-state solutions. These represent washout and
no-washout in the reactor and are given by
Washout

(
S∗, X∗) = (

S∗
0 , 0

)
, (7)

No-washout

(
S∗, X∗) =

(
ln

(
τ∗

τ∗−1

)
,
[

S∗
0 − ln

(
τ∗

τ∗−1

)] [
1 + β∗ ln

(
τ∗

τ∗−1

)])
. (8)

The substrate component of (8) is only defined if τ ∗ > 1. Given that τ ∗ > 1 the cell
mass component of (8) is non-negative only if

τ ∗ ≥ exp
[
S∗

0

]
exp

[
S∗

0

] − 1
= 1

1 − exp
[−S∗

0

] .

This is therefore the condition for the no-washout solution to be physically meaningful.
The corresponding result for the Monod model is stated in Table 1.
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Table 1 Comparison of results for the Tessier model with variable yield coefficient and the Monod model
with variable yield coefficient [21]

Monod Tessier

Condition for no-washout branch τ∗ ≥ 1 + 1
S∗

0
τ∗ ≥ 1

1−exp
[−S∗

0
]

Condition for a global maximum β∗S∗
0 > 1 β∗S∗

0 > 1

Residence time at the global maximum 1 + 2β∗
β∗S∗

0 −1
1

1−exp

[
−

(
S∗
0 β∗−1

)
2β∗

]

X∗
max

(
1+β∗S∗

0
)2

4β∗
(
1+β∗S∗

0
)2

4β∗
Condition for the washout state to be stable τ∗ < 1 + 1

S∗
0

τ∗ < 1
1−exp

[−S∗
0
]

It is instructive to investigate how the steady-state performance of the reactor, that is
to say the value of the cell mass concentration on the non-washout branch of solutions,
varies with the residence time. In particular, we want to determine whether there is a
residence time at which the cell mass concentration is maximised.

Calculation shows that

dX∗

dτ ∗ = 0 �⇒ τ ∗
max = 1

1−exp

[
− (S∗

0 β∗−1)
2β∗

] . (9)

It follows that if S∗
0β∗ > 1 the steady-state diagram of system performance (X∗) against

residence time (τ ∗) has a local maximum at the point

(
τ ∗, S∗

max, X∗
max

) =
(

τ ∗
max,

S∗
0β∗ − 1

2β∗ ,

[
1 + β∗S∗

0

]2

4β∗

)
. (10)

The maximum value of the cell mass concentration using Tessier kinetics with a vari-
able yield coefficient is the same as the maximum value of the cell mass concentration
using Monod kinetics with a variable yield coefficient (see Table 1).

Conversely, if β∗S∗
0 < 1 then τ ∗

max < 0 and the corresponding value of X∗ is
non-physical. In this case the steady-state performance is maximised at an infinite
residence time

lim
τ∗→∞ X∗ = S∗

0 .

3.1.2 Stability analysis of washout solution

From an operational viewpoint washout must be avoided. In this section we investigate
the stability of the washout branch. The Jacobian matrix for washout is

J =
(

− 1
τ∗ − (1−exp[−S∗

0 ])
1+β∗S∗

0

0 − 1
τ∗ + (

1 − exp
[−S∗

0

])
)

.
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The eigenvalues of this matrix are

λ1 = − 1

τ ∗ ,

λ2 = − 1

τ ∗ + (
1 − exp

[−S∗
0

])
.

Thus the washout branch is stable provided

τ ∗ < 1
1−exp[−S∗

0 ] = exp[S∗
0 ]

exp[S∗
0 ]−1 .

This stability criterion was given by Chen et al. [7, Eq. 10].

3.1.3 Stability of the no-washout branch

In this section we analyze the stability of the steady-state given by Eq. 8. Note that this
steady-state is only physically meaningful for τ ∗ ≥ 1

1−exp[−S∗
0 ] > 1. The Jacobian

matrix for the no washout state is

J =
(

J11 J12
J21 0

)
(11)

where

J11 = − 1

τ ∗ −
[

S∗
0 − ln

(
τ ∗

τ ∗ − 1

)] ⎡
⎣τ ∗ − 1

τ ∗ − β∗

2τ
[
1 + β∗ ln

(
τ∗

τ∗−1

)]
⎤
⎦ ,

J12 = − 1

τ ∗
[
1 + β∗ ln

(
τ∗

τ∗−1

)] ,

J21 = τ ∗ − 1

τ ∗ ·
[

S∗
0 − ln

(
τ ∗

τ ∗ − 1

)][
1 + β∗ ln

(
τ ∗

τ ∗ − 1

)]
.

The Jacobian matrix (11) has a zero eigenvalue when J11 J22 − J12 J21 = 0. This
requires τ ∗ to take the value 1 or 1

1−exp[−S∗
0 ] . Only the latter condition is meaningful.

The condition for a double-zero eigenvalue are J11 J22−J12 J21 = 0 and J11+J22 =
0 [45]. By inspection these conditions can not be satisfied with S∗

0 > 0. Thus a dou-
ble-zero eigenvalue can not occur.

We know that when τ ∗ ≥ 1
1−exp[−S∗

0 ] there is a value of the residence time that

maximizes the reactor performance. The values for the substrate and cell mass con-
centrations at this point are given by Eq. 10. From the Jacobian matrix (11) this point
is stable if

trJ = J11 + J22 < 0,

detJ = J11 J22 − J12 J21 > 0.
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After some algebraic manipulation we obtain

J11 + J22 = −
(
1 + β∗S∗

0

)
2β∗ · exp

[
1 − S∗

0β∗

2β∗

]
< 0,

J11 J22 − J12 J21 = 1 + β∗S∗
0

2β∗

(
1 − exp

[
1 − β∗S∗

0

2β∗

])
exp

[
1 − β∗S∗

0

2β∗

]
.

As X∗
max only exists if β∗S∗

0 −1 > 0 we conclude that J11 J22 − J12 J21 > 0 and conse-
quently the point (S∗

max, X∗
max) is always stable and therefore has practical importance.

3.1.4 Hopf bifurcation on the no-washout state

The condition for a Hopf bifurcation is J11 + J22 = 0 with J11 J22 − J12 J21 > 0
[45]. The latter is always satisfied. The values of the residence time at which Hopf
bifurcations satisfy the equation

H = −S∗
0

(
τ ∗ − 1 − β∗) − 1 − [(

τ ∗ − 1
)
β∗S∗

0 − (
τ ∗ − 1 − 2β∗)] ln

(
τ ∗

τ ∗ − 1

)

+ (
τ ∗ − 1

)
β∗ ln2

(
τ ∗

τ ∗ − 1

)
(12)

subject to the constraint τ ∗ ≥ 1
1−exp[−S∗

0 ] . (It is possible to show that this equation has

no solutions when β∗ = 0.) With β∗ = 5.25 and S∗
0 = 20, the parameter values used

for Fig. 1a, Eq. 12 has zeroes at τ ∗ = 1.00005 and τ ∗ = 2.209. These are the values
of the residence time corresponding to Hopf bifurcation points.

A degenerate Hopf bifurcation at which two Hopf points annihilate each other in
an unfolding diagram (a H21 degeneracy) occurs when the following conditions are
satisfied [45].

H = 0,

dH
dτ ∗ = 0.

(13)

When applied to Eq. 12 these conditions give the following system of equations

S∗
0 = −(τ∗−1−2β∗)+(τ∗−1)(τ∗−2β∗) ln

(
τ∗

τ∗−1

)
+τ∗(τ∗−1)β∗ ln2

(
τ∗

τ∗−1

)

(τ∗−1)
[
τ∗−β∗+τ∗β∗ ln

(
τ∗

τ∗−1

)] , (14)

(
τ ∗ − 1

) (
1 + 2β∗) − 2β∗2 = − (

τ ∗ − 1
)
β∗2

ln2
(

τ ∗

τ ∗ − 1

)

−2
(
τ ∗ − 1

) (
1 + β∗) β∗ ln

(
τ ∗

τ ∗ − 1

)
. (15)
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(a) (b)

(c)

Fig. 1 Steady-diagrams showing the variation of reactor performance (X∗) with residence time (τ∗).
Parameter value: yield constant, β∗ = 5.25

When β∗ = 5.25 the solution of these equations is

(
S∗

0 , τ ∗) = (4.67, 1.408) . (16)

From this analysis we conclude the natural oscillations are impossible for one of the
cases: S∗

0 < 4.67 or S∗
0 > 4.67. Comparing Fig. 1a and b we see that natural oscilla-

tions do not occur in this system for S∗
0 < 4.67.

3.1.5 Maximum productivity

The dimensionless reactor productivity is defined by

P∗ = X∗

τ ∗ . (17)

The value of the residence time at which the productivity is maximised is determined
by
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dP∗

dτ
= 0 �⇒

S∗
0

(
τ ∗ + β∗ − 1

) + 1 = (
τ ∗ − 1

)
β∗ ln2

(
τ ∗

τ ∗ − 1

)

+ [
2β∗ − (

τ ∗ − 1
) (

β∗S∗
0 − 1

)]
ln

(
τ ∗

τ ∗ − 1

)
. (18)

For example, when β∗ = 5.25 and S∗
0 = 20 the productivity is maximised when

τ ∗ = 1.000050 and is P∗
max = 535.021.

3.2 Numerical results

Figure 1 shows three steady-state diagrams. The first steady-state diagram contains
two Hopf points. In the second and third steady-state diagrams there are no Hopf
points as the inflowing substrate concentration is below that corresponding to the H21
degeneracy. In (a and b) S∗

0β∗ > 1 so that the steady-state value of the reactor-perfor-
mance (X∗) is maximised at a finite value of the residence time. For the given value
of the yield coefficient the maximum cell mass is given by: X∗

max = 535, Fig. 1a, and
X∗

max = 1.288, Fig. 1b. In Fig. 1c S∗
0β∗ < 1, so that the system performance increases

monotonically with the residence system.
The two Hopf bifurcation points in Fig. 1a are unfolded with the substrate concen-

tration in the feed in Fig. 2. This shows that as the substrate concentration is decreased
the two Hopf points annihilate each other at a H21 degeneracy. The parameter values
at the degeneracy are given in Eq. 16. For values of the feed substrate concentration
greater than the value at the H21 degeneracy the Hopf locus defines the values of
the residence time at which a Hopf bifurcation occurs and consequently defines the
parameter values over which periodic solutions occur. The figure also shows the value
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Fig. 2 Unfolding diagram showing the Hopf bifurcation locus, the residence time at which the steady-
state cell mass concentration (X∗) is maximised and the residence time at which the reactor productivity
(P∗ = X∗/τ∗) is maximised. Parameter value: yield constant, β∗ = 5.25
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Fig. 3 Bifurcation diagram showing the H21 locus and the transition from a steady-state diagram having
a local maximum to not having a global maximum (NGM). This figure defines the parameter regions in
which the steady-state diagrams shown in Fig. 1 are found

of the residence time at which the reactor productivity and the cell mass concentration
are maximised as a function of the substrate concentration in the feed. For a fixed value
of the feed substrate concentration we see that the reactor productivity is maximised
at a lower value of the residence time than the cell mass concentration.

Figure 3 summarizes the information provided in Sect. 3.1.1, on the existence of
a global maximum in the cell mass concentration at a finite value of the residence
time, and Sect. 3.1.4, on the H21 degeneracy. The reactor performance has a local
maximum at a finite value of the residence time if S∗

0β∗ > 1. However, if S∗
0β∗ < 1

then the reactor performance is optimized at infinite residence time. For a fixed value
of the yield coefficient the steady-state diagram has no Hopf points if the value of the
inflowing substrate concentration is below the H21 locus and two Hopf points if it is
above. Thus this figure shows the parameter values in which of the three steady-state
diagrams shown in Fig. 1 are to be found.

4 Discussion

In this section we briefly discuss some issues relating to the analysis of a cascade of
two bioreactors. We consider a system in which the total residence time, the yield
coefficient and the substrate concentration in the feed are fixed to the values stated in
the caption of Fig. 4. This figure shows how the cell mass concentration leaving the
cascade (X∗

2) depends upon the residence time in the first reactor (τ ∗
1 ). Note that the

residence time in the second reactor is defined by τ ∗
2 = 7.5 − τ ∗

1 .
The limits τ ∗

1 = 0 and τ ∗
1 = 7.5 represent the degenerate case in which the ‘cas-

cade’ consists of a single reactor of residence time τ ∗ = 7.5. The performance of a
single reactor with this design parameter is obtained from Eq. 8 as X∗ = 34.8. The
performance of the cascade varies considerably as the reactor-design is varied through
the choice of the residence time in the first reactor. The optimal performance of the cas-
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Fig. 4 Dependence of dimensionless cell mass concentration in the second reactor upon the dimensionless
residence time in the first reactor for a two-reactor cascade. Parameter values: feed concentration S∗

0 = 20;
total residence time, τ∗

t = 7.5; yield constant, β∗ = 5.25

cade shown in Fig. 4 occurs when τ ∗
1 = 1.00005 and is given by X∗

2 = 545.145. This
is an increase of 1,467% when compared to a single reactor operating with τ ∗ = 7.5.
Similar results have led other researchers to suggest that a two-bioreactor cascade can
lead to an enormous improvement in performance compared to a single bioreactor of
the same total residence time [6,10].

However this is not the best basis to compare a cascade and a single reactor [11].
From Eqs. 9 and 10 we find that the cell mass concentration leaving a single bioreactor
is maximised when τ ∗ = 1.00005 and is given by X∗

max = 535. The best performance
of the cascade is not so spectacular when compared to that of an optimally designed
single reactor: an increase of only 1.9%. Furthermore, for these operating conditions
the productivity of the optimal single reactor (534.97) is considerable greater than that
of the optimized cascade (72.7).

Thus we deduce that prior to maximizing the performance of a two-reactor cascade,
we must first consider the performance of a single reactor. In particular, performance
of the two configurations should not be compared for the same operating conditions
(such as the same total residence time). Instead the best possible performance for each
reactor configuration should be compared.

Finally, Chen et al. [7] have stated that the the optimal steady-state performance of
a single bioreactor with Tessier kinetics “cannot be further improved by the reactor
splitting”. We have shown in this section that this is certainly not the case, although
the increase may be marginal.

5 Conclusion

We have analyzed microbial growth in a flow reactor using a Tessier growth model
with a variable yield coefficient. Where possible we have compared results from this
scheme against those corresponding to Monod kinetics with a variable yield coeffi-
cient.
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For a given value of the yield coefficient (β∗) we have shown that natural oscilla-
tions can only occur if the substrate concentration in the feed (S∗

0 ) is sufficiently high.
This is of interest when a reactor cascade is being used with the aim of using natural
oscillations generated in the first reactor to force the subsequent reactors.

We have shown that if β∗S∗
0 > 1 then there is a value of the residence time, τ ∗

max,
given by Eq. 9, at which the steady-state performance of the reactor is maximised,
X∗

max, given by Eq. 10. If β∗S∗
0 < 1 then the steady-state performance of the reactor

is maximised at an infinite residence time, with X∗
max = S∗

0 .
We also considered a cascade of two bioreactors in which the residence time in the

two reactors are varied whilst keeping the total residence time fixed. We suggest that
the maximal performance of the cascade, whether measured by the cell mass concen-
tration leaving the reactor or the reactor productivity, should be compared against the
corresponding optimal one-reactor system to evaluate the relative increase in perfor-
mance from using two reactors. The results of this paper provide a benchmark for such
a comparison.
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